Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Shock ; 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2227271

ABSTRACT

BACKGROUND: Patients with severe COVID-19 are at an increased risk of Acute Respiratory Distress Syndrome (ARDS) and mortality. This is due to the increased levels of pro-inflammatory cytokines that amplify downstream pathways that are controlled by immune regulators. OBJECTIVE: This study aimed to investigate the association between cytokine genetic variants, cytokine serum levels/profiles, and disease severity in critically and non-critically ill COVID-19 patients. METHODS: This cross-sectional study recruited 646 participants that tested positive for SARS-CoV-2 from 6 collection sites across the United Arab Emirates. Medical files were accessed to retrieve clinical data. Blood samples were collected from all participants. Patients were divided into two clinical groups; non-critical (n = 453) and critical (n = 193); according to WHO classification guidelines for COVID-19 patients. Cytokine analyses were conducted on serum of a subset of the cohort. specifically on 426 participants (non-critical = 264; critical = 162). Candidate gene analyses of 33 cytokine-related genes (2,836 variants) were extracted from a Genome-Wide Association Study (GWAS) to identify genetic variants with pleiotropic effects on a specific cytokine and the severity of COVID-19 disease. RESULTS: Age, Body Mass Index (BMI), and pre-existing medical conditions were found to be significant risk factors that contribute to COVID-19 disease severity. After correcting for age, gender and BMI, IP-10 (p < 0.001), IFN (p = 0.001), IL-6 (p < 0.001), and CXCL-16 (p < 0.001) serum levels were significantly higher among critical COVID-19 cases, when compared to non-critically ill patients. To investigate if the genetic variants involved in the serum cytokine levels are associated with COVID-19 severity, we studied several genes. Single Nucleotide Polymorphisms (SNPs) in IL6 (rs1554606; ORG = 0.67 (0.66, 0.68); p = 0.017), IFNG (rs2069718; ORG = 0.63 (0.62, 0.64); p = 0.001), MIP (rs799187; ORA = 1.69 (1.66, 1.72); p = 0.034), and CXCL16 (rs8071286; ORA = 1.42 (1.41, 1.44); p = 0.018) were found to be associated with critically ill patients. Polymorphisms in the CXCL10, CCL2, IL1, CCL7 and TNF genes were not associated with the COVID-19 critical phenotype. The genotypes of IL-6 (Gene: IL6 (7p15.3)) and CXCL-16 (Gene: CXCL16 (17p13.2)) were significantly associated with the serum levels of the respective cytokine in critical cases of COVID-19. CONCLUSION: Data obtained from measuring cytokine levels and genetic variant analyses suggest that IL-6 and CXCL-16 could potentially be used as potential biomarkers for monitoring disease progression of COVID-19 patients. The findings in this study suggest that specific cytokine gene variants correlate with serum levels of the specific cytokine. These genetic variants could be of assistance in the early identification of high-risk patients on admission to the clinic to improve the management of COVID-19 patients, and other infectious diseases.

2.
Sci Rep ; 12(1): 21491, 2022 12 13.
Article in English | MEDLINE | ID: covidwho-2160328

ABSTRACT

A strong association between obesity and COVID-19 complications and a lack of prognostic factors that explain the unpredictable severity among these patients still exist despite the various vaccination programs. The expression of angiotensin converting enzyme 2 (ACE2), the main receptor for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is enhanced in obese individuals. The occurrence of frequent genetic single nucleotide polymorphisms (SNPs) in ACE2 is suggested to increase COVID-19 severity. Accordingly, we hypothesize that obesity-associated ACE2 polymorphisms increase the severity of COVID-19. In this study, we profiled eight frequently reported ACE2 SNPs in a cohort of lean and obese COVID-19 patients (n = 82). We highlight the significant association of rs2285666, rs2048683, rs879922, and rs4240157 with increased severity in obese COVID-19 patients as compared to lean counterparts. These co-morbid-associated SNPs tend to positively correlate, hence proposing possible functional cooperation to ACE2 regulation. In obese COVID-19 patients, rs2285666, rs879922, and rs4240157 are significantly associated with increased blood nitrogen urea and creatinine levels. In conclusion, we highlight the contribution of ACE2 SNPs in enhancing COVID-19 severity in obese individuals. The results from this study provide a basis for further investigations required to shed light on the underlying mechanisms of COVID-19 associated SNPs in COVID-19 obese patients.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Obesity , Humans , Angiotensin-Converting Enzyme 2/genetics , COVID-19/complications , COVID-19/genetics , Obesity/complications , Obesity/genetics , Polymorphism, Single Nucleotide , SARS-CoV-2/metabolism
3.
Metabolomics ; 18(11): 81, 2022 Oct 22.
Article in English | MEDLINE | ID: covidwho-2085518

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 (COVID-19) is strongly linked to dysregulation of various molecular, cellular, and physiological processes that change abundance of different biomolecules including metabolites that may be ultimately used as biomarkers for disease progression and severity. It is important at early stage to readily distinguish those patients that are likely to progress to moderate and severe stages. OBJECTIVES: This study aimed to investigate the utility of saliva and plasma metabolomic profiles as a potential parameter for risk stratifying COVID-19 patients. METHOD: LC-MS/MS-based untargeted metabolomics were used to profile the changes in saliva and plasma metabolomic profiles of COVID-19 patients with different severities. RESULTS: Saliva and plasma metabolites were screened in 62 COVID-19 patients and 18 non-infected controls. The COVID-19 group included 16 severe, 15 moderate, 16 mild, and 15 asymptomatic cases. Thirty-six differential metabolites were detected in COVID-19 versus control comparisons. SARS-CoV-2 induced metabolic derangement differed with infection severity. The metabolic changes were identified in saliva and plasma, however, saliva showed higher intensity of metabolic changes. Levels of saliva metabolites such as sphingosine and kynurenine were significantly different between COVID-19 infected and non-infected individuals; while linoleic acid and Alpha-ketoisovaleric acid were specifically increased in severe compared to non-severe patients. As expected, the two prognostic biomarkers of C-reactive protein and D-dimer were negatively correlated with sphingosine and 5-Aminolevulinic acid, and positively correlated with L-Tryptophan and L-Kynurenine. CONCLUSION: Saliva disease-specific and severity-specific metabolite could be employed as potential COVID-19 diagnostic and prognostic biomarkers.


Subject(s)
COVID-19 , Humans , Metabolomics , SARS-CoV-2 , Saliva/metabolism , Chromatography, Liquid , Kynurenine/metabolism , Tryptophan/metabolism , C-Reactive Protein/metabolism , Sphingosine , Linoleic Acid/metabolism , Aminolevulinic Acid/metabolism , Tandem Mass Spectrometry , Severity of Illness Index , Biomarkers
4.
Sci Rep ; 12(1): 16019, 2022 09 26.
Article in English | MEDLINE | ID: covidwho-2042336

ABSTRACT

Cytokines are major players in orchestrating inflammation, disease pathogenesis and severity during COVID-19 disease. However, the role of IL-19 in COVID-19 pathogenesis remains elusive. Herein, through the analysis of transcriptomic datasets of SARS-CoV-2 infected lung cells, nasopharyngeal swabs, and lung autopsies of COVID-19 patients, we report that expression levels of IL-19 and its receptor, IL-20R2, were upregulated following SARS-CoV-2 infection. Of 202 adult COVID-19 patients, IL-19 protein level was significantly higher in blood and saliva of asymptomatic patients compared to healthy controls when adjusted for patients' demographics (P < 0.001). Interestingly, high saliva IL-19 level was also associated with COVID-19 severity (P < 0.0001), need for mechanical ventilation (P = 0.002), and/or death (P = 0.010) within 29 days of admission, after adjusting for patients' demographics, diabetes mellitus comorbidity, and COVID-19 serum markers of severity such as D-dimer, C-reactive protein, and ferritin. Moreover, patients who received interferon beta during their hospital stay had lower plasma IL-19 concentrations (24 pg mL-1) than those who received tocilizumab (39.2 pg mL-1) or corticosteroids (42.5 pg mL-1). Our findings indicate that high saliva IL-19 level was associated with COVID-19 infectivity and disease severity.


Subject(s)
COVID-19 , Adult , Biomarkers , C-Reactive Protein , Cytokines , Ferritins , Humans , Interferon-beta , Interleukins/genetics , SARS-CoV-2 , Saliva , Up-Regulation
5.
PLoS One ; 17(9): e0274841, 2022.
Article in English | MEDLINE | ID: covidwho-2039431

ABSTRACT

OBJECTIVES: T-helper 17 cell-mediated response and their effector IL-17 cytokine induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a major cause of COVID-19 disease severity and death. Therefore, the study aimed to determine if IL-17 level in saliva mirrors its circulatory level and hence can be used as a non-invasive biomarker for disease severity. METHODS: Interleukin-17 (IL-17) level was evaluated by ELISA in saliva and blood of 201 adult COVID-19 patients with different levels of severity. The IL-17 saliva level was also associated with COVID-19 disease severity, and need for mechanical ventilation and/or death within 29 days after admission of severe COVID-19 patients. RESULTS: We found that IL-17 level in saliva of COVID-19 patients reflected its circulatory level. High IL-17 level in saliva was associated with COVID-19 severity (P<0.001), need for mechanical ventilation (P = 0.002), and/or death by 29 days (P = 0.002), after adjusting for patients' demographics, comorbidity, and COVID-19 serum severity markers such as D-Dimer, C-reactive protein, and ferritin. CONCLUSION: We propose that saliva IL-17 level could be used as a biomarker to identify patients at risk of developing severe COVID-19.


Subject(s)
COVID-19 , Adult , Biomarkers , C-Reactive Protein , COVID-19/diagnosis , Cytokines , Ferritins , Humans , Interleukin-17 , SARS-CoV-2
6.
Vaccines (Basel) ; 10(9)2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2006266

ABSTRACT

Introduction: COVID-19 is considered the greatest health disaster affecting humans during the 21st century, which urged the need to develop an effective vaccine to acquire enough immunity against the virus. The main challenge faced during the development of such vaccines was the insufficiency of time, which raised the question about the vaccine safety and efficacy, especially among children. Parents' and caregivers' thoughts and acceptance of administering the vaccine to their children are still debatable topics and are yet to be explored in the UAE. Aims: The study aims to exploit parent acceptance, perception, and hesitancy toward the COVID-19 vaccine administration for their children and the link with their choice of distance learning instead of face-to-face education in the UAE. Methodology: This study utilized a cross-sectional descriptive design. A sample of 1049 parents across all emirates were conveniently approached and surveyed using Google forms from June to September 2021. The participants responded to a semi-structured questionnaire pertaining to socio-demographic, educational, and other questions related to COVID-19 and its link with their beliefs in whether the vaccination of their children will help with resuming face-to-face learning. Results: Approximately 74% of the parents confirmed that their children who are 16 years old and above have received the vaccine, and 71% were willing to give the vaccine to their children aged above 5 years. Parents with children receiving online education and those with children where the online modality of learning negatively affected their academic achievement are more prone to administer the COVID-19 vaccine to their children above five years old. The results show a significant association between vaccination of children and the parental desire for resuming physical attendance in schools (p value < 0.001). Multivariate analysis showed that the highest acceptance rate was from parents with children of low academic achievement due to online learning modality during the pandemic. Conclusion: In the UAE, parents of young children have shown a positive attitude towards COVID-19 vaccination in belief that vaccines will reduce the risk of infection and assist in resuming normal lifestyles, such as going back physically to schools. The results reflect the public awareness and the hypervigilance regarding the COVID-19 pandemic in the UAE.

7.
Front Immunol ; 13: 827603, 2022.
Article in English | MEDLINE | ID: covidwho-1952318

ABSTRACT

Despite the growing number of the vaccinated population, COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global health burden. Obesity, a metabolic syndrome affecting one-third of the population, has proven to be a major risk factor for COVID-19 severe complications. Several studies have identified metabolic signatures and disrupted metabolic pathways associated with COVID-19, however there are no reports evaluating the role of obesity in the COVID-19 metabolic regulation. In this study we highlight the involvement of obesity metabolically in affecting SARS-CoV-2 infection and the consequent health complications, mainly cardiovascular disease. We measured one hundred and forty-four (144) metabolites using ultra high-performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) to identify metabolic changes in response to SARS-CoV-2 infection, in lean and obese COVID-19 positive (n=82) and COVID-19 negative (n=24) patients. The identified metabolites are found to be mainly correlating with glucose, energy and steroid metabolisms. Further data analysis indicated twelve (12) significantly yet differentially abundant metabolites associated with viral infection and health complications, in COVID-19 obese patients. Two of the detected metabolites, n6-acetyl-l-lysine and p-cresol, are detected only among the COVID-19 cohort, exhibiting significantly higher levels in COVID-19 obese patients when compared to COVID-19 lean patients. These metabolites have important roles in viral entry and could explain the increased susceptibility of obese patients. On the same note, a set of six metabolites associated with antiviral and anti-inflammatory functions displayed significantly lower abundance in COVID-19 obese patients. In conclusion, this report highlights the plasma metabolome of COVID-19 obese patients as a metabolic feature and signature to help improve clinical outcomes. We propose n6-acetyl-l-lysine and p-cresol as potential metabolic markers which warrant further investigations to better understand their involvement in different metabolic pathways in COVID-19.


Subject(s)
COVID-19 , Cresols , Humans , Lysine , Metabolomics/methods , Obesity/complications , SARS-CoV-2
8.
Front Immunol ; 13: 865845, 2022.
Article in English | MEDLINE | ID: covidwho-1834407

ABSTRACT

Since its emergence as a pandemic in March 2020, coronavirus disease (COVID-19) outcome has been explored via several predictive models, using specific clinical or biochemical parameters. In the current study, we developed an integrative non-linear predictive model of COVID-19 outcome, using clinical, biochemical, immunological, and radiological data of patients with different disease severities. Initially, the immunological signature of the disease was investigated through transcriptomics analysis of nasopharyngeal swab samples of patients with different COVID-19 severity versus control subjects (exploratory cohort, n=61), identifying significant differential expression of several cytokines. Accordingly, 24 cytokines were validated using a multiplex assay in the serum of COVID-19 patients and control subjects (validation cohort, n=77). Predictors of severity were Interleukin (IL)-10, Programmed Death-Ligand-1 (PDL-1), Tumor necrosis factors-α, absolute neutrophil count, C-reactive protein, lactate dehydrogenase, blood urea nitrogen, and ferritin; with high predictive efficacy (AUC=0.93 and 0.98 using ROC analysis of the predictive capacity of cytokines and biochemical markers, respectively). Increased IL-6 and granzyme B were found to predict liver injury in COVID-19 patients, whereas interferon-gamma (IFN-γ), IL-1 receptor-a (IL-1Ra) and PD-L1 were predictors of remarkable radiological findings. The model revealed consistent elevation of IL-15 and IL-10 in severe cases. Combining basic biochemical and radiological investigations with a limited number of curated cytokines will likely attain accurate predictive value in COVID-19. The model-derived cytokines highlight critical pathways in the pathophysiology of the COVID-19 with insight towards potential therapeutic targets. Our modeling methodology can be implemented using new datasets to identify key players and predict outcomes in new variants of COVID-19.


Subject(s)
COVID-19 , Cytokines , Disease Progression , Humans , Pandemics , SARS-CoV-2 , Severity of Illness Index
9.
Front Med (Lausanne) ; 9: 790475, 2022.
Article in English | MEDLINE | ID: covidwho-1798933
10.
PLoS One ; 17(3): e0264682, 2022.
Article in English | MEDLINE | ID: covidwho-1724857

ABSTRACT

Global and local whole genome sequencing of SARS-CoV-2 enables the tracing of domestic and international transmissions. We sequenced Viral RNA from 37 sampled Covid-19 patients with RT-PCR-confirmed infections across the UAE and developed time-resolved phylogenies with 69 local and 3,894 global genome sequences. Furthermore, we investigated specific clades associated with the UAE cohort and, their global diversity, introduction events and inferred domestic and international virus transmissions between January and June 2020. The study comprehensively characterized the genomic aspects of the virus and its spread within the UAE and identified that the prevalence shift of the D614G mutation was due to the later introductions of the G-variant associated with international travel, rather than higher local transmissibility. For clades spanning different emirates, the most recent common ancestors pre-date domestic travel bans. In conclusion, we observe a steep and sustained decline of international transmissions immediately following the introduction of international travel restrictions.


Subject(s)
COVID-19/transmission , COVID-19/virology , Infection Control/methods , SARS-CoV-2/genetics , Travel/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/epidemiology , Child , Child, Preschool , Female , Genome, Viral/genetics , Humans , Male , Middle Aged , Molecular Typing/methods , Mutation , Phylogeny , RNA, Viral , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Travel-Related Illness , United Arab Emirates/epidemiology , Whole Genome Sequencing , Young Adult
11.
Hum Immunol ; 83(1): 1-9, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1719801

ABSTRACT

The class I and class II Human Leucocyte Antigens (HLA) are an integral part of the host adaptive immune system against viral infections. The characterization of HLA allele frequency in the population can play an important role in determining whether HLA antigens contribute to viral susceptibility. In this regard, global efforts are currently underway to study possible correlations between HLA alleles with the occurrence and severity of SARS-CoV-2 infection. Specifically, this study examined the possible association between specific HLA alleles and susceptibility to SARS-CoV-2 in a population from the United Arab Emirates (UAE). The frequencies of HLA class I (HLA-A, -B, and -C) and HLA class II alleles (HLA-DRB1 and -DQB1); defined using Next Generation Sequencing (NGS); from 115 UAE nationals with mild, moderate, and severe SARS-CoV-2 infection are presented here. HLA alleles and supertypes were compared between hospitalized and non-hospitalized subjects. Statistical significance was observed between certain HLA alleles and supertypes and the severity of the infection. Specifically, alleles HLA-B*51:01 and HLA-A*26:01 showed a negative association (suggestive of protection), whilst genotypes HLA-A*03:01, HLA-DRB1*15:01, and supertype B44 showed a positive association (suggestive of predisposition) to COVID-19 severity. The results support the potential use of HLA testing to differentiate between patients who require specific clinical management strategies.


Subject(s)
COVID-19/genetics , HLA Antigens/genetics , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Female , Gene Frequency , Genetic Predisposition to Disease , HLA Antigens/immunology , Haplotypes , Host-Pathogen Interactions , Humans , Male , Middle Aged , Protective Factors , Risk Assessment , Risk Factors , SARS-CoV-2/pathogenicity , Severity of Illness Index , United Arab Emirates , Young Adult
12.
Front Immunol ; 12: 796094, 2021.
Article in English | MEDLINE | ID: covidwho-1690446

ABSTRACT

It is still controversial whether chronic lung inflammation increases the risk for COVID-19. One of the risk factors for acquiring COVID-19 is the level of expression of SARS-CoV-2 entry receptors, ACE2 and TMPRSS2, in lung tissue. It is, however, not clear how lung tissue inflammation affects expression levels of these receptors. We hence aimed to determine the level of SARS-CoV-2 receptors in lung tissue of asthmatic relative to age, gender, and asthma severity, and to investigate the factors regulating that. Therefore, gene expression data sets of well-known asthmatic cohorts (SARP and U-BIOPRED) were used to evaluate the association of ACE2 and TMPRSS2 with age, gender of the asthmatic patients, and also the type of the underlying lung tissue inflammatory cytokines. Notably, ACE2 and to less extent TMPRSS2 expression were upregulated in the lung tissue of asthmatics compared to healthy controls. Although a differential expression of ACE2, but not TMPRSS2 was observed relative to age within the moderate and severe asthma groups, our data suggest that age may not be a key regulatory factor of its expression. The type of tissue inflammation, however, associated significantly with ACE2 and TMPRSS2 expression levels following adjusting with age, gender and oral corticosteroids use of the patient. Type I cytokine (IFN-γ), IL-8, and IL-19 were associated with increased expression, while Type II cytokines (IL-4 and IL-13) with lower expression of ACE2 in lung tissue (airway epithelium and/or lung biopsies) of moderate and severe asthmatic patients. Of note, IL-19 was associated with ACE2 expression while IL-17 was associated with TMPRSS2 expression in sputum of asthmatic subjects. In vitro treatment of bronchial fibroblasts with IL-17 and IL-19 cytokines confirmed the regulatory effect of these cytokines on SARS-CoV-2 entry receptors. Our results suggest that the type of inflammation may regulate ACE2 and TMPRSS2 expression in the lung tissue of asthmatics and may hence affect susceptibility to SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Asthma/immunology , COVID-19/immunology , Cytokines/immunology , Gene Expression Regulation/immunology , Lung/immunology , SARS-CoV-2/immunology , Adult , Female , Humans , Male , Middle Aged , Serine Endopeptidases/immunology
13.
Front Med (Lausanne) ; 8: 759648, 2021.
Article in English | MEDLINE | ID: covidwho-1662592

ABSTRACT

Introduction: Coronavirus disease 2019 (COVID-19) disease severity differs widely due to numerous factors including ABO gene-derived susceptibility or resistance. The objective of this study was to investigate the association of the ABO blood group and genetic variations of the ABO gene with COVID-19 severity in a heterogeneous hospital population sample from the United Arab Emirates, with the use of an epidemiological and candidate gene approach from a genome-wide association study (GWAS). Methods: In this cross-sectional study, a total of 646 participants who tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were recruited from multiple hospitals and population-based (quarantine camps) recruitment sites from March 2020 to February 2021. The participants were divided into two groups based on the severity of COVID-19: noncritical (n = 453) and critical [intensive care unit (ICU) patients] (n = 193), as per the COVID-19 Reporting and Data System (CO-RADS) classification. The multivariate logistic regression analysis demonstrated the association of ABO blood type as well as circulating anti-A antibodies and anti-B antibodies as well as A and B antigens, in association with critical COVID-19 hospital presentation. A candidate gene analysis approach was conducted from a GWAS where we examined 240 single nucleotide polymorphisms (SNPs) (position in chr9: 136125788-136150617) in the ABO gene, in association with critical COVID-19 hospital presentation. Results: Patients with blood group O [odds ratio (OR): 0.51 (0.33, 0.79); p = 0.003] were less likely to develop critical COVID-19 symptoms. Eight alleles have been identified to be associated with a protective effect of blood group O in ABO 3'untranslated region (UTR): rs199969472 (p = 0.0052), rs34266669 (p = 0.0052), rs76700116 (p = 0.0052), rs7849280 (p = 0.0052), rs34039247 (p = 0.0104), rs10901251 (p = 0.0165), rs9411475 (p = 0.0377), and rs13291798 (p = 0.0377). Conclusion: Our findings suggest that there are novel allelic variants that link genetic variants of the ABO gene and ABO blood groups contributing to the reduced risk of critical COVID-19 disease. This study is the first study to combine genetic and serological evidence of the involvement of the ABO blood groups and the ABO gene allelic associations with COVID-19 severity within the Middle Eastern population.

14.
EBioMedicine ; 74: 103695, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1596202

ABSTRACT

BACKGROUND: The heterogeneity in symptomatology and phenotypic profile attributable to COVID-19 is widely unknown. The objective of this manuscript is to conduct a trans-ancestry genome wide association study (GWAS) meta-analysis of COVID-19 severity to improve the understanding of potentially causal targets for SARS-CoV-2. METHODS: This cross-sectional study recruited 646 participants in the UAE that were divided into two phenotypic groups based on the severity of COVID-19 phenotypes, hospitalized (n=482) and non-hospitalized (n=164) participants. Hospitalized participants were COVID-19 patients that developed acute respiratory distress syndrome (ARDS), pneumonia or progression to respiratory failure that required supplemental oxygen therapy or mechanical ventilation support or had severe complications such as septic shock or multi-organ failure. We conducted a trans-ancestry meta-analysis GWAS of European (n=302), American (n=102), South Asian (n=99), and East Asian (n=107) ancestry populations. We also carried out comprehensive post-GWAS analysis, including enrichment of SNP associations in tissues and cell-types, expression quantitative trait loci and differential expression analysis. FINDINGS: Eight genes demonstrated a strong association signal: VWA8 gene in locus 13p14·11 (SNP rs10507497; p=9·54 x10-7), PDE8B gene in locus 5q13·3 (SNP rs7715119; p=2·19 x10-6), CTSC gene in locus 11q14·2 (rs72953026; p=2·38 x10-6), THSD7B gene in locus 2q22·1 (rs7605851; p=3·07x10-6), STK39 gene in locus 2q24·3 (rs7595310; p=4·55 x10-6), FBXO34 gene in locus 14q22·3 (rs10140801; p=8·26 x10-6), RPL6P27 gene in locus 18p11·31 (rs11659676; p=8·88 x10-6), and METTL21C gene in locus 13q33·1 (rs599976; p=8·95 x10-6). The genes are expressed in the lung, associated to tumour progression, emphysema, airway obstruction, and surface tension within the lung, as well as an association to T-cell-mediated inflammation and the production of inflammatory cytokines. INTERPRETATION: We have discovered eight highly plausible genetic association with hospitalized cases in COVID-19. Further studies must be conducted on worldwide population genetics to facilitate the development of population specific therapeutics to mitigate this worldwide challenge. FUNDING: This review was commissioned as part of a project to study the host cell receptors of coronaviruses funded by Khalifa University's CPRA grant (Reference number 2020-004).


Subject(s)
Genetic Predisposition to Disease/genetics , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , Respiratory Distress Syndrome/genetics , Severity of Illness Index , Adolescent , Adult , Aged , COVID-19/mortality , COVID-19/pathology , Cross-Sectional Studies , Female , Genome-Wide Association Study , Hospitalization/statistics & numerical data , Humans , Inflammation/genetics , Lung/pathology , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Population Groups/genetics , Respiratory Distress Syndrome/pathology , SARS-CoV-2 , T-Lymphocytes/immunology , Treatment Outcome , United Arab Emirates , Young Adult
15.
Front Pharmacol ; 12: 631879, 2021.
Article in English | MEDLINE | ID: covidwho-1488443

ABSTRACT

Mitogen-activated protein kinases (MAPK) and NF-kappaB (NF-κB) pathway regulate many cellular processes and are essential for immune cells function. Their activity is controlled by dual-specificity phosphatases (DUSPs). A comprehensive analysis of publicly available gene expression data sets of human airway epithelial cells (AECs) infected with SARS-CoV-2 identified DUSP1 and DUSP5 among the lowest induced transcripts within these pathways. These proteins are known to downregulate MAPK and NF-κB pathways; and their lower expression was associated with increased activity of MAPK and NF-κB signaling and enhanced expression of proinflammatory cytokines such as TNF-α. Infection with other coronaviruses did not have a similar effect on these genes. Interestingly, treatment with chloroquine and/or non-steroidal anti-inflammatory drugs counteracted the SARS-CoV-2 induced reduction of DUSP1 and DUSP5 genes expression. Therapeutically, impeding this evasion mechanism of SARS-CoV-2 may help control the exaggerated activation of these immune regulatory pathways during a COVID-19 infection.

16.
Nutrients ; 13(11)2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1480891

ABSTRACT

Vitamin D has many effects on cells in the immune system. Many studies have linked low vitamin D status with severity of COVID-19. Genetic variants involved in vitamin D metabolism have been implicated as potential risk factors for severe COVID-19 outcomes. This study investigated how genetic variations in humans affected the clinical presentation of COVID-19. In total, 646 patients with SARS-CoV-2 infection were divided into two groups: noncritical COVID-19 (n = 453; 70.12%) and a critical group (n = 193; 29.87%). Genotype data on the GC, NADSYN1, VDR, and CYP2R1 genes along with data on serum 25-hydroxyvitamin D levels were compiled in patients admitted to a major hospital in the United Arab Emirates between April 2020 and January 2021. We identified 12 single-nucleotide polymorphisms associated with the critical COVID-19 condition: rs59241277, rs113574864, rs182901986, rs60349934, and rs113876500; rs4944076, rs4944997, rs4944998, rs4944979, and rs10898210; and rs11574018 and rs11574024. We report significant associations between genetic determinants of vitamin D metabolism and COVID-19 severity in the UAE population. Further research needed to clarify the mechanism of action against viral infection in vitamin D deficiency. These variants could be used with vaccination to manage the spread of SARS-CoV-2 and could be particularly valuable in populations in which vitamin D deficiency is common.


Subject(s)
COVID-19/genetics , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/genetics , Cholestanetriol 26-Monooxygenase/genetics , Cytochrome P450 Family 2/genetics , Polymorphism, Single Nucleotide , Receptors, Calcitriol/genetics , Vitamin D/analogs & derivatives , Adult , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/metabolism , Cholestanetriol 26-Monooxygenase/metabolism , Cytochrome P450 Family 2/metabolism , Female , Humans , Male , Middle Aged , Receptors, Calcitriol/metabolism , Severity of Illness Index , United Arab Emirates , Vitamin D/blood
17.
Front Immunol ; 12: 595150, 2021.
Article in English | MEDLINE | ID: covidwho-1311373

ABSTRACT

As one of the current global health conundrums, COVID-19 pandemic caused a dramatic increase of cases exceeding 79 million and 1.7 million deaths worldwide. Severe presentation of COVID-19 is characterized by cytokine storm and chronic inflammation resulting in multi-organ dysfunction. Currently, it is unclear whether extrapulmonary tissues contribute to the cytokine storm mediated-disease exacerbation. In this study, we applied systems immunology analysis to investigate the immunomodulatory effects of SARS-CoV-2 infection in lung, liver, kidney, and heart tissues and the potential contribution of these tissues to cytokines production. Notably, genes associated with neutrophil-mediated immune response (e.g. CXCL1) were particularly upregulated in lung, whereas genes associated with eosinophil-mediated immune response (e.g. CCL11) were particularly upregulated in heart tissue. In contrast, immune responses mediated by monocytes, dendritic cells, T-cells and B-cells were almost similarly dysregulated in all tissue types. Focused analysis of 14 cytokines classically upregulated in COVID-19 patients revealed that only some of these cytokines are dysregulated in lung tissue, whereas the other cytokines are upregulated in extrapulmonary tissues (e.g. IL6 and IL2RA). Investigations of potential mechanisms by which SARS-CoV-2 modulates the immune response and cytokine production revealed a marked dysregulation of NF-κB signaling particularly CBM complex and the NF-κB inhibitor BCL3. Moreover, overexpression of mucin family genes (e.g. MUC3A, MUC4, MUC5B, MUC16, and MUC17) and HSP90AB1 suggest that the exacerbated inflammation activated pulmonary and extrapulmonary tissues remodeling. In addition, we identified multiple sets of immune response associated genes upregulated in a tissue-specific manner (DCLRE1C, CHI3L1, and PARP14 in lung; APOA4, NFASC, WIPF3, and CD34 in liver; LILRA5, ISG20, S100A12, and HLX in kidney; and ASS1 and PTPN1 in heart). Altogether, these findings suggest that the cytokines storm triggered by SARS-CoV-2 infection is potentially the result of dysregulated cytokine production by inflamed pulmonary and extrapulmonary (e.g. liver, kidney, and heart) tissues.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Kidney/immunology , Liver/immunology , Lung/immunology , Myocardium/immunology , Pandemics , SARS-CoV-2/immunology , Severity of Illness Index , Biomarkers/blood , COVID-19/blood , COVID-19/complications , Case-Control Studies , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokines/biosynthesis , Humans , Immunity/genetics , Monocytes/immunology , Neutrophils/immunology , Transcriptome , Up-Regulation/genetics
18.
World J Gastroenterol ; 27(21): 2850-2870, 2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1256684

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19), a pandemic contributing to more than 105 million cases and more than 2.3 million deaths worldwide, was described to be frequently accompanied by extrapulmonary manifestations, including liver dysfunction. Liver dysfunction and elevated liver enzymes were observed in about 53% of COVID-19 patients. AIM: To gain insight into transcriptional abnormalities in liver tissue of severe COVID-19 patients that may result in liver dysfunction. METHODS: The transcriptome of liver autopsy samples from severe COVID-19 patients against those of non-COVID donors was analyzed. Differentially expressed genes were identified from normalized RNA-seq data and analyzed for the enrichment of functional clusters and pathways. The differentially expressed genes were then compared against the genetic signatures of liver diseases including cirrhosis, fibrosis, non-alcoholic fatty liver disease (NAFLD), and hepatitis A/B/C. Gene expression of some differentially expressed genes was assessed in the blood samples of severe COVID-19 patients with liver dysfunction using qRT-PCR. RESULTS: Analysis of the differential transcriptome of the liver tissue of severe COVID-19 patients revealed a significant upregulation of transcripts implicated in tissue remodeling including G-coupled protein receptors family genes, DNAJB1, IGF2, EGFR, and HDGF. Concordantly, the differential transcriptome of severe COVID-19 liver tissues substantially overlapped with the disease signature of liver diseases characterized with pathological tissue remodeling (liver cirrhosis, Fibrosis, NAFLD, and hepatitis A/B/C). Moreover, we observed a significant suppression of transcripts implicated in metabolic pathways as well as mitochondrial function, including cytochrome P450 family members, ACAD11, CIDEB, GNMT, and GPAM. Consequently, drug and xenobiotics metabolism pathways are significantly suppressed suggesting a decrease in liver detoxification capacity. In correspondence with the RNA-seq data analysis, we observed a significant upregulation of DNAJB1 and HSP90AB1 as well as significant downregulation of CYP39A1 in the blood plasma of severe COVID-19 patients with liver dysfunction. CONCLUSION: Severe COVID-19 patients appear to experience significant transcriptional shift that may ensue tissue remodeling, mitochondrial dysfunction and lower hepatic detoxification resulting in the clinically observed liver dysfunction.


Subject(s)
COVID-19 , Non-alcoholic Fatty Liver Disease , HSP40 Heat-Shock Proteins , Humans , Liver , SARS-CoV-2 , Steroid Hydroxylases , Systems Biology , Transcriptome
19.
Front Med (Lausanne) ; 8: 592336, 2021.
Article in English | MEDLINE | ID: covidwho-1238867

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious virus with overwhelming demand on healthcare systems, which require advanced predictive analytics to strategize COVID-19 management in a more effective and efficient manner. We analyzed clinical data of 2017 COVID-19 cases reported in the Dubai health authority and developed predictive models to predict the patient's length of hospital stay and risk of death. A decision tree (DT) model to predict COVID-19 length of stay was developed based on patient clinical information. The model showed very good performance with a coefficient of determination R 2 of 49.8% and a median absolute deviation of 2.85 days. Furthermore, another DT-based model was constructed to predict COVID-19 risk of death. The model showed excellent performance with sensitivity and specificity of 96.5 and 87.8%, respectively, and overall prediction accuracy of 96%. Further validation using unsupervised learning methods showed similar separation patterns, and a receiver operator characteristic approach suggested stable and robust DT model performance. The results show that a high risk of death of 78.2% is indicated for intubated COVID-19 patients who have not used anticoagulant medications. Fortunately, intubated patients who are using anticoagulant and dexamethasone medications with an international normalized ratio of <1.69 have zero risk of death from COVID-19. In conclusion, we constructed artificial intelligence-based models to accurately predict the length of hospital stay and risk of death in COVID-19 cases. These smart models will arm physicians on the front line to enhance management strategies to save lives.

20.
Nutrients ; 13(5)2021 May 19.
Article in English | MEDLINE | ID: covidwho-1234787

ABSTRACT

Insufficient blood levels of the neurohormone vitamin D are associated with increased risk of COVID-19 severity and mortality. Despite the global rollout of vaccinations and promising preliminary results, the focus remains on additional preventive measures to manage COVID-19. Results conflict on vitamin D's plausible role in preventing and treating COVID-19. We examined the relation between vitamin D status and COVID-19 severity and mortality among the multiethnic population of the United Arab Emirates. Our observational study used data for 522 participants who tested positive for SARS-CoV-2 at one of the main hospitals in Abu Dhabi and Dubai. Only 464 of those patients were included for data analysis. Demographic and clinical data were retrospectively analyzed. Serum samples immediately drawn at the first hospital visit were used to measure serum 25-hydroxyvitamin D [25(OH)D] concentrations through automated electrochemiluminescence. Levels < 12 ng/mL were significantly associated with higher risk of severe COVID-19 infection and of death. Age was the only other independent risk factor, whereas comorbidities and smoking did not contribute to the outcomes upon adjustment. Sex of patients was not an important predictor for severity or death. Our study is the first conducted in the UAE to measure 25(OH)D levels in SARS-CoV-2-positive patients and confirm the association of levels < 12 ng/mL with COVID-19 severity and mortality.


Subject(s)
COVID-19 , SARS-CoV-2/metabolism , Severity of Illness Index , Vitamin D Deficiency , Vitamin D/analogs & derivatives , Adult , COVID-19/blood , COVID-19/mortality , Disease-Free Survival , Female , Humans , Male , Middle Aged , Survival Rate , United Arab Emirates/epidemiology , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/mortality
SELECTION OF CITATIONS
SEARCH DETAIL